逆向工程_状态寄存器

状态寄存器以及循环&选择介绍

状态寄存器

   CPU内部的寄存器中,有一种特殊的寄存器(对于不同的处理器,个数和结构都可能不同).这种寄存器在ARM中,被称为状态寄存器就是CPSR(current program status register)寄存器
CPSR和其他寄存器不一样,其他寄存器是用来存放数据的,都是整个寄存器具有一个含义.而CPSR寄存器是按位起作用的,也就是说,它的每一位都有专门的含义,记录特定的信息.

注:CPSR寄存器是32位的

  • CPSR的低8位(包括I、F、T和M[4:0])称为控制位,程序无法修改,除非CPU运行于特权模式下,程序才能修改控制位!
  • N、Z、C、V均为条件码标志位。它们的内容可被算术或逻辑运算的结果所改变,并且可以决定某条指令是否被执行!意义重大!

N(Negative)标志

CPSR的第31位是 N,符号标志位。它记录相关指令执行后,其结果是否为负.如果为负 N = 1,如果是非负数 N = 0.

   注意,在ARM64的指令集中,有的指令的执行时影响状态寄存器的,比如add\sub\or等,他们大都是运算指令(进行逻辑或算数运算);

Z(Zero)标志

CPSR的第30位是Z,0标志位。它记录相关指令执行后,其结果是否为0.如果结果为0.那么Z = 1.如果结果不为0,那么Z = 0.

   对于Z的值,我们可以这样来看,Z标记相关指令的计算结果是否为0,如果为0,则N要记录下”是0”这样的肯定信息.在计算机中1表示逻辑真,表示肯定.所以当结果为0的时候Z = 1,表示”结果是0”.如果结果不为0,则Z要记录下”不是0”这样的否定信息.在计算机中0表示逻辑假,表示否定,所以当结果不为0的时候Z = 0,表示”结果不为0”。

C(Carry)标志

CPSR的第29位是C,进位标志位。一般情况下,进行无符号数的运算。
加法运算:当运算结果产生了进位时(无符号数溢出),C=1,否则C=0。
减法运算(包括CMP):当运算时产生了借位时(无符号数溢出),C=0,否则C=1。

   对于位数为N的无符号数来说,其对应的二进制信息的最高位,即第N - 1位,就是它的最高有效位,而假想存在的第N位,就是相对于最高有效位的更高位。如下图所示:

进位

   我们知道,当两个数据相加的时候,有可能产生从最高有效位向更高位的进位。比如两个32位数据:0xaaaaaaaa + 0xaaaaaaaa,将产生进位。由于这个进位值在32位中无法保存,我们就只是简单的说这个进位值丢失了。其实CPU在运算的时候,并不丢弃这个进位制,而是记录在一个特殊的寄存器的某一位上。ARM下就用C位来记录这个进位值。比如,下面的指令

1
2
3
4
5
mov w0,#0xaaaaaaaa0xa 的二进制是 1010
adds w0,w0,w0; 执行后 相当于 1010 << 1 进位1(无符号溢出) 所以C标记 为 1
adds w0,w0,w0; 执行后 相当于 0101 << 1 进位0(无符号没溢出) 所以C标记 为 0
adds w0,w0,w0; 重复上面操作
adds w0,w0,w0

借位

   当两个数据做减法的时候,有可能向更高位借位。再比如,两个32位数据:0x00000000 - 0x000000ff,将产生借位,借位后,相当于计算0x100000000 - 0x000000ff。得到0xffffff01 这个值。由于借了一位,所以C位 用来标记借位。C = 0.比如下面指令:

1
2
3
4
mov w0,#0x0
subs w0,w0,#0xff ;
subs w0,w0,#0xff
subs w0,w0,#0xff

V(Overflow)溢出标志

CPSR的第28位是V,溢出标志位。在进行有符号数运算的时候,如果超过了机器所能标识的范围,称为溢出。

  • 正数 + 正数 为负数 溢出
  • 负数 + 负数 为正数 溢出
  • 正数 + 负数 不可能溢出

指令介绍

bl指令

  • 跳转,将下一条执行的指令放入lr(X30)寄存器

ret

  • 返回到lr寄存器所保存的地址 执行代码

lr 寄存器

  • 保存子程序返回地址

pc 寄存器

  • 指向马上要执行的代码地址

sp

  • 指向了我们栈
  • 栈平衡(每个函数调用完毕之后,将拉伸的栈空间平衡(将sp加回去))
  • 函数调用会开辟一段空间(栈空间)
  • 函数的局部变量、参数、寄存器的保护

参数:x0 – x7(个数有关系、数据类型也有关)
多余的就会入栈

函数嵌套调用:
| - A(开辟) –> B(开辟) –> A(开辟)
| - A<–>A 死的递归(内存溢出)

adrp

  • 是计算指定的数据地址 到当前PC值的相对偏移
    由于得到的结果是低12bit为0
1
2
3
4
adrp x0, 1
adrp
10 1024
12 == 4KB
  1. 将1的值,左移12位 1 0000 0000 0000 == 0x1000
  2. 将PC寄存器的低12位清零 0x1002e6874 ==> 0x1002e6000
  3. 将将1 和 2 的结果相加 给 X0 寄存器!!

内存分区域

  • 代码区 特点: 可读可写可执行
  • 栈区域 放参数和局部变量
  • 堆区域 动态申请 可读可写
  • 全局: 可读可写
  • 常量区: 只读!

循环&选择

cmp(Compare)比较指令

   CMP 把一个寄存器的内容和另一个寄存器的内容或立即数进行比较。但不存储结果,只是正确的更改标志。
   一般CMP做完判断后会进行跳转,后面通常会跟上B指令!

  • BL 标号:跳转到标号处执行
  • B.GT 标号:比较结果是大于(greater than),执行标号,否则不跳转
  • B.GE 标号:比较结果是大于等于(greater than or equal to),执行标号,否则不跳转
  • B.EQ 标号:比较结果是等于,执行标号,否则不跳转
  • B.HI 标号:比较结果是无符号大于,执行标号,否则不跳转

Switch

1、假设switch语句的分支比较少的时候(例如3,少于4的时候没有意义)没有必要使用此结构,相当于if。
2、各个分支常量的差值较大的时候,编译器会在效率还是内存进行取舍,这个时候编译器还是会编译成类似于if,else的结构。
3、在分支比较多的时候:在编译的时候会生成一个表(跳转表每个地址四个字节)。